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Biomass and Nutrients in Aboveground Vegetation and
Soils of Florida Qak-Saw Palmetto Scrub

PauL A. ScuMmaLzer and C. Ross HINKLE

Dynamac Corporation, NASA, Biomedical Operations Office, Mail Code DYN-2,
Kennedy Space Center, Florida 32899

ABSTRACT

We sampled aboveground biomass in four stande of oak-saw palmetto scrub vege-
tation that were 2, 4, 8, and 25 years since the previous fire by harvesting 1 m? plots.
Biomass samples were analyzed for major nutrients. We sampled and analyzed soils from
the 0-15 cm and 15-30 cm layers. Stands were dominated by Quercus myrtifolia, .
geminata, Q. chapmanii, Serenoa repens, and ericaceous shrubs, Live aboveground biomass
(excluding saw palmetto rhizomes) increased with time since fire, Litter biomass increased
for eight years after fire. Standing dead biomass was an important component of above-
ground biomass throughout the time sequence. Aboveground saw palmetto rhizomes were
a major biomass category. Nutrient concentrations in live aboveground biomass did not
appear to change with time since fire and wetre similar to those in other shrublands. Biomass
pools of major nutrients frequently equaled or exceeded those in the soil, but wetter sites
had more organic matter and nutrients in the soil. Atmospheric deposition of N, P, Ca,
Mg, and K was low compared to biomass pocls. Retention of nutrients in soils and regrowing
vegetation after fire may be important to the persistence of scrub on low nutrient soils.

INTRODUCTION

Florida scrub vegetation is characterized by a shrub layer of evergreen,
sclerophylous species including myrtle (Quercus myrtifolia), sand live (@ gem-
inata) and Chapman (&. chapmanii) oaks, ericads such as rusty lyonia (Lyonia
ferruginea), repent palms such as saw palmetto (Serenca repens), and other
shrubs such as Florida rosemary (Ceratiola ericoides), usually occurring on well-
drained, sandy soils low in nutrients, and burning in periodic, intense fires (Mul-
vania 1931; Webber 1935; Kurz 1942; Laessle 1942, 1958, 1967; Myers 1990). In
this paper, we examine ocak-saw palmetto scrub vegetation that lacks a tree
canopy; a type sometimes termed scrubby flatwoods (Laessle 1942; Abrahamson
1984a, 1984h; Abrahamson et al. 1984: Givens et al. 1984; Abrahamson and
Hartnett 1990).

Natural fire frequency for oak-saw palmetto scrub is not known with cer-
tainty. It is believed that oak-saw palmetto scrub burned more frequently than
sand pine (Pinus clausa) scrub, thought to have a fire cycle of 20 to 40 or more
years (Austin 1976), and more frequently than rosemary scrub with a fire cycle
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-ears (Johnson 1982), but less often than the two
e (Pinus palustris)/wiregrass (Aristida stricta)
son et al. 1984). Burning intervals of 5-20 years
1intain scrub habitat for the Florida Scrub Jay
‘ulescens) (Fitzpatrick et al. 1991).

Guerin (1988, 1993) provide the only other pub-
da serub vegetation. Little is known of nutrient
ops in scrub and their responses to fire. Vickers
nutrient concentrations for several scrub species
cies evolved under regimes of low nutrient soils
n 1984a, 1984b); however, such oligotrophic sys-
ient losses from fire (Raison 1979, Boerner 1982).
rcur from direct volatilization of organic matter,
1d or water erosion of ash, and leaching to ground-
ile by fire (Raison 1979, Wells et al. 1979, Raison
icrub species may be an adaptation to low nutrient
' Monk 1966) as well as drought stress.

: standing crops of biomass and nutrients in an
to scrub stands on Merritt Island, Kennedy Space
:re on less well drained soils; thus, we also examine
al gradient on biomass and nutrients.

METHODS

imetto scrub vegetation that were 2, 4, 8, and 25
located for sampling in an inland region of scrub
and Hinkle 1992). Stand 1 was eight years since
one to two meters tall. Stand 2 had burned four
two years before sampling. Stand 4 was about 25
ers high. All the transects of Stands 1 and 3 were
ohumod); transects of Stand 4 were on Pomello
la sand (Spodic Quartzipsamment) (Huckle et al.
cts were on Pomello sand, but two were on the
and {Aeric Haplaquod). Species composition and
1 Schmalzer and Hinkle (1992).

Ty

nd biomass, living and dead, and litter on plots
vegetation sampling transects used to determine
r and Hinkle 1987, 1992). Material was harvested
quadrat as projected above the ground; sections
he plot but extending beyond it were excluded.
ur above- or below-ground; only the aboveground
d not attempt to separate rhizomes into live and
live biomass samples into leaves, stems, trunks
. Thizomes, and oven-dried them at 105°C to con-
f dead biomass were considered, litter biomass
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consisting of intact leaves and stems on the ground and standing dead biomass
consisting of erect dead stems and attached dead palmetto leaves.

Due to limitations in the number of samples that could be analyzed, we
took subsamples from each harvested plot within a stand in which the taxa
occurred and pooled them for chemical analyses. Samples were ground, homog-
enized, and oven-dried at 105°C. For metals and phosphorus analyses, 1 ¢ of oven
dried material was dry-ashed at 450°C in a muffle furnace (Wolfe 1962) and taken
up in hydrochleric acid. Analyses for calcium (Ca), magnesium (Mg), potassium
(K), sodium (Na), and aluminum (Al) were performed by atomic absorption
spectrophotometry (Perkin-Elmer Corporation 1982). Total phosphorus (P) was
determined by automated colorimetry (Technicon Industrial Systems 1983b). To
determine total Kjeldahl nitrogen (TKN), a 0.25 g sample was digested in 2 m]
concentrated H,S0,, 2ml 30% H,0,, and 4 ml of K,SO,-CuS0, digestion mixture
in a model BD-40 block digester and analyzed by automated colorimetry (Tech-
nicon Industrial Systems 1983a). We calculated standing crops of nutrients in
aboveground biomass per plot by multiplying the biomass of the plant part or
other biomass category by its nutrient concentration.

Soil and Precipitation Chemistry

We sampled soils from the 0 to 15 ¢cm and 15 to 30 em depths near each
transect. Soil samples were air dried, large roots excluded, homogenized, and
then analyzed for pH, organic matter, conductivity, cation exchange capacity,
exchangeable Ca, Mg, Na, K, nitrate-nitrogen (NO;-N), ammonium-nitrogen
(NH,-N), TKN, and Al Methods of soil analyses and concentration data are
given elsewhere (Schmalzer and Hinkle 1987, 1992). We calculated standing crops
of nutrients per square meter in the soil to a depth of 30 cm from nutrient
concentrations and soil bulk density. Based on bulk density data given in soil
surveys of Brevard County (Huckle et al. 1974) and Volusia County (Baldwin et
al. 1980), we used a bulk density value of 1.20 g/em? for the 0 to 15 cm layer and
a value of 1.50 g/emé for the 15 to 30 cm layer. Mean annual deposition of inorganic
nitrogen (N), Ca, Mg, K, and Na was calculated from 10 years of data (1978-87)
from the National Atmospheric Deposition Program (NADP) station centrally
located on Merritt Island (Madsen et al. 1992).

Data Analysis

Data on biomass, nutrient standing crops, and soil nutrient pools were log-
transformed before most analyses to enhance normality. The combined soil nu-
trient pools (0-30 cm) were compared among the four stands using one-way
analysis of variance (ANOVA); the samples occurring on Myakka soils were
excluded from this comparison. Previous analyses (Schmalzer and Hinkle 1992)
had shown that most nutrients were related to soil organic matter, and Stand 2
had higher organic matter levels even after excluding the Myakka soils. Therefore
if the overall ANOVA was significant, a priori contrasts were used to test whether
Stand 2 differed from the other stands (Day and Quinn 1989). Biomass nutrient
pools for total live leaves, total live stems, standing dead plus litter, and total
biomass including saw palmetto rhizomes were compared using one-way ANOVA
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among the four stands of differing ages. The sample size of the vegetation on
Myakka soils was not sufficient for statistical comparison to the other data;
however, we present data from these samples in tables and figures because they
present a useful contrast. Analysis of total nutrient pools in soil and hiomass
began with two-way ANOVA with stands and source (biomass/soil) as factors;
however, two-way interactions were significant for most nutrients. Therefore,
t-tests between biomass and soil pools for each stand were used for comparisons.
Statistical analyses were conducted with SPSS for Windows (Norusis 1993).

RESULTS
Biomass

Leaves and stems of scrub oaks were the primary components of live biomass
excluding saw palmetto rhizomes (Table 1) in all except the saw palmetto-dom-
inated plots of Stand 2. Saw palmetto rhizomes were a major biomass category
except in Stand 4. The rhizomes of saw palmetto are fire resistant and form a
refractory part of the serub community. The live biomass category excluded saw
palmetto rhizomes when trends over time were being examined. Litter plus stand-
ing dead biomass exceeded live biomass except in the oldest stand.

Biomass changed with time since fire. Live biomass increased with time
since fire, rapidly at first and then more slowly (Figure 1). The relationship of
live biomass with age was best expressed by the equation: log, live biomass =
0.391-log,,age + 2.758, r = 0.59, p = 0.002. Litter biomass (Figure 2) was highly
variable in the most recently burned stand probably due to the patchy intensity
of the fire that removed most litter in some places but not others. Litter increased
with time to about year 8; the relationship was fit best by the equation: log, litter
biomass = 0.558:-log,,age + 2.364, r = 0.60, p = 0.002. Standing dead biomass
was highly variable in the recently burned stand (Figure 3). It showed no trend
with time (r = 0.12, p = 0.56). The composition of standing dead biomass changed
with time (personal observation). In the most recently burned stands, it consisted
of stems of shrubs and saw palmetto killed by the fire but not consumed by it.
After about 5-6 years, these stems decayed and fell to the ground. Fire-killed
standing dead stems were still prevalent in the four-year-old stand but net in
the six- or eight-year-old stands. Replacing fire-killed stems in the standing dead
category in older stands were dead stems and branches of shrubs and dead leaves
of saw palmetto that had grown since the last fire.

All stands had substantial organic matter in the soil (Figure 4). The soils
of the saw palmetto transects had much more organic matter than the other
stands. Excluding saw palmetto transects, soil organic matter pools differed among
the stands (ANOVA, p < 0.001), and a priori contrasts indicated that Stand 2
differed from the others (p < 0.001). Soil organic matter standing crops exceeded
total aboveground biomass in Stand 2 (p = 0.02) and Stand 4 (p < 0.001), but
did not differ in Stand 1 {(p = 0.71) or Stand 3 (p = 0.11).

Biomass and Soil Chemistry

Soil nutrient pools (0-30 em) of TKN, P, Ca, Mg, K, and Na differed among
the stands (p < 0.001), and for each nutrient, the a priori contrast between Stand
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Table 1. Aboveground biomass {g/m?) in the serub stands

Stand Age (yr)

Stand 3 Stand 2 Stand 2 Stand 1 Stand 4
Oak-Saw  Saw

Palmetto Palmetto

2 4

4

8

25

(N=6) (N=4) (N=2) (N=7) (N=6)

x xX x X X
Biomass Category (SD) {SD) (SD) (SD) (SD)
Aristida stricta 3.3 6.8 6.5 274 —
(8.2) (7.9 (9.2) {53.8) —
Befaria racemosa leaves 8.3 0.8 — — —
(44.9) (1.5) — — —
stems 19.7 0.5 — -— —_
(48.2) 1.0 - — —
Cyperaceae 0.2 —_ — — 0.7
(0.4) - — — (1.6)
Hypericum spp. — 3.0 — — —_
— (6.0) — — —
Ilex glabra leaves — — 9.5 — —
— —_ (13.4) — -
stems — — 10.5 —_ —_
— — (14.8) —_ —_
Lyonia spp. leaves 40.7 42.8 13.5 51.9 47.0
(77.4) (384) (181) (66.6) (75.2)
stems 20.7 30,8 11.5 524 130.3
{41.3) (29.1) (16.3) (65.8) (197.6)
Myriea cerifera leaves — 0.8 1.5 1.7 -
— (1.5} (2.1) (4.5} —
stems — 1.0 2.5 1.7 —
— (2.0) (3.5) (4.5} —
Quercus chapmanii leaves 21.5 — — 45.0 18.2
(34.2) — — (64.7)  (26.4)
stems 155 — — 91.7 36.3
(29.9) — — (166.2) (68.1)
Quercus geminata leaves 57.3 1185 5.5 57.0 78.5
(76.5) (229.0) (7.8} (90.9) (70.8)
stems 64.3 1715 8.5 143.0 264.5
(106.6) (333.7) (12.0) (226.0) (247.2)
Quercus myrtifolia leaves 156.2 104.0 4.5 148.0 153.0
(127.4) (131.8) (6.4) (148.0) (39.8)
stems 391.0 258.0 5.0 364.1 847.2
(720.8) (315.2) (1.1) (397.6) (409.0)
trunks — — — — 567.6
— —_ — [ {1,390.1)
Serenoca repens leaves 99.3 368.3 444,0 328.6 66.3
(112.9) (377.1) (39.6) (370.0) (111L.6)
stems 15.7 85.0 120.0 57.7 19.3
(19.3) (99.7) (36.8) (64.0) (32.5)
rhizomes 1,696.7 2,204.8 4,409.5 3,239.6 223.2
(3,289.8) (3,074.7) (242.5) (3,921.8) (546.6)

172
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Table 1. Continued.
Stand 3 Stand 2 Stand 2 Stand 1 Stand 4
Qak-Saw Saw
Palmetto Palmettio
Stand Age (yr) 2 4 4 8 25
(N=6) (N=4) (N=2) (N=7) (N=6)
x x x X X
Biomass Category (SD) (SD) (SD) (SD) (SD)
Vaceinium myrsinites 2.0 13 — 4.7 3.5
(2.5) (1.5) — (1.7) (8.1)
Vaccinium stamineum stems —_ — — —_ 60.3
—_ — —_ — (147.8)
Ximenia americana leaves 5.2 — —_ — —
(2n — — — —
stems 41.3 — —_ — —
(0L — — — —
Miscellaneous herbs — — 2.5 26.0 —
— —_ {(3.5) (52.8) —_
Total—Live Leaves 404.0 646.0 487.5 690.3 367.2
(200.0) (230.0) (34.6) (230.1) (116.3)
Total—Live Stems 568.2 546.8 1653.0 7107 1,925.5
{676.9) (199.8) (19.8) (607.6) (1,306.7)
Total—Live excluding 9722 1,192.8 6456.5 1,401.0 2,292.7
Saw Palmetto rhizomes (766.7)  (93.7) (54.4) (675.8) (1,296.2)

Total Live

2,668.8 3,3975
(3,037.4) (3,115.9)

5,055.0 46406 25158
(297.0) (3,523.9) (1,341.5)

Standing Dead—Saw Palmetto 53.3 340.0 366.5 575.6 49.5
(49.5) (173.4) (145.0) (559.1) {95.3)

Standing Dead—Other 809.5 318.0 215 132.3 519.7
(L,032.1) (346.7) (30.4) (162.7) (308.4)

Total Standing Dead 862.8 658.0 3830 7079  569.2
(1,028.6) (314.7) (175.4) (452.9) (334.0}

Litter 4393 482.0 §75.0 L1711 1,093
(669.1) (218.1) (147.1) (322.1) (250.5)

Total Standing Dead 1,302.2 1,140.0 963.0 1,879.0 1,660.5
and Litter (1,171.2) (492.4) (322.4) (373.9) (354.3)

2 and the other stands was significant (p < 0,001). Aluminum pools were not
different among the stands (p = 0.24).

Concentrations of TKN, P, Ca, Mg, K, Na, and Al in live biomass showed
no trends with time since fire for species present in all stands (Schmalzer and
Hinkle 1987). Litter concentrations of P, Ca, Mg, and K appeared elevated in
the two vear old stand as did standing dead concentrations of K, and Mg (Schmal-
zer and Hinkle 1987). Tables of nutrient concentrations by species and stand are
available from the authors on request.

Saw palmetto rhizomes contained considerable standing crops of N (Table
2). Standing dead and litter were also significant pools (Figure 5). Standing dead
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Figure 1. Standing crops of live biomass (excluding saw palmetto rhizomes) in the
age sequence of scrub stands. Data shown are means and 95% confidence intervals for oak-
saw palmetto scrub; means only are shown for the saw palmetto stand. The increase in live
biomass with time is fit best by the equation log,, live biomass = 0.391-log,,age + 2.758,
r = (.59, p = 0.002.

BIOMASS (g/m?)

was particularly important in the youngest stand. The stem biomass pool of N
differed among stands (p = 0.02), but changes in leaf standing crops were not
significant {p = 0.11). Accumulation occurred primarily in stem biomass in the
oldest stand. The nutrient pool including saw palmette rhizomes did not differ
among stands (p = 0.41). Thus, increases in live biomass with time increased N
standing crop, but only when saw palmetto rhizomes were excluded. TKN stand-
ing crops in living and dead biomass exceeded that in soil {0-30 cm) in Stand 3
(p = 0.03) but did not differ in Stands 1 and 4 (p > 0.2) (Figure 5). Stand 2,
with greater organic matter in the soil, had much more N in the soil than the
other stands and more in the soil than in biomass (p = 0.002).

Saw palmetto rhizomes, litter, and standing dead material contained major
pools of P (Table 3). Saw palmetto rhizomes were a major pool in three of four
stands where they had high biomass. The standing dead plus litter category did
not differ among stands (p = 0.22). Phosphorus accumulated in live biomass with
time since fire, primarily in stem tissue; stem standing crops differed among
stands (p = 0.04), but not leaf standing crops (p = 0.29). However, P in total live
biomass including saw palmetto rhizomes did not differ among stands {p = 0.59).
Standing crops of P in living and dead bicmass exceeded that in soil (0-30 em)
{p < 0.001) except in Stand 2 where they did not differ (p = 0.4) (Figure 6).
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Figure 2. Standing crops of litter biomass in the age sequence of scrub stands. Data
shown are means and 956% confidence intervals for oak-saw palmetto scrub; means only
are shown for the saw palmetto stand. The increase in litter biomass with time is fit best
by the equation log,, litter biomass = 0.558 log,,age + 2.364, r = 0.60, p = 0.002,
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Stand 2 had much more soil P than the other stands prebably due to greater soil
organic matter.

Live stems, saw palmetto rhizomes, and standing dead plus litter were
important pools of Ca (Table 4). The stem biomass pool differed among stands
(p = 0.03), but not the leaf biomass peol (p = 0.26). Calcium accumulated in
stem biomass in the oldest stand (Figure 7). Standing dead plus litter (p = 0.05)
and total live standing crops (p = 0.04) differed among stands. Calcium standing
crops in living and dead biomass exceeded that in soil (0-30 ¢m) in Stand 4 (p
< 0.001); differences were not significant in Stand 1 (p = 0.8) and Stand 3 (p =
0.6) (Figure 7). Stand 2 had more Ca in the soil than in biomass (p < 0.001).

Saw palmetto rhizomes, litter, and standing dead were substantial pools of
Mg in this system (Table 5). Pools in live leaves (p = 0.008) and live stems (p =
0.04) differed among stands. Stem biomass was most important in the oldest
stand (Figure 8). The standing dead plus litter pool (p = 0.1) and the total
including saw palmetto rhizomes (p = 0.26) did not differ among stands. Mag-
nesium standing crops in living and dead biomass exceeded that in soil (0-30
em) in Stand 4 (p = 0.01), pools were not different in Stand 1 (p = 0.13) and
Stand 3 (p = 0.19), while soil was the greater pool in Stand 2 (p = 0.008) (Figure
8).
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Figure 3. Standing crops of standing dead biomass in the age sequence of scrub
stands. Data shown are means and 95% confidence intervals for oak-saw palmetto scrub;
means only are shown for the saw palmetto stand. There is no significant trend with time
(r = 0.12, p = 0.56).

Saw palmetto rhizomes were particularly important as a pool for potassium
(Table 6, Figure 9). Potassium pools in leaves (p = 0.24), stems (p = 0.15), and
total biomass (p = 0.37) did not differ among stands. However, the standing dead
plus litter pool differed (p = 0.01). Potassium standing crops in living and dead
biomass tended to exceed those in soil (0-30 ¢m) (Figure 9); however, these
differences were not significant [Stand 1 (p = 0.08), Stand 2 (p = 0.8), Stand 3
(p = 0.2), Stand 4 (p = 0.1}].

Saw palmetto rhizomes were a substantial pool of Na {Table 7, Figure 10).
Biomass pools in leaves (p = 0.003) and stems (p = 0.01) differed among stands,
but standing dead plus litter (p = 0.55) or total biomass including saw palmetto
rhizomes (p = 0.38) did not. Changes in leaf hiomass Na were not directional
with time (Table 7), but stem biomass accumulated Na with time. Standing crops
of Na in living and dead biomass did not differ from that in scil (p > 0.1) for
three of the four scrub stands. Stand 4, with little saw palmetto rhizome bhiomass,
had more Na in soil than in biomass (p = 0.01).

Saw palmetto rhizomes and litter were the major biomass pools of Al
standing dead material contained smaller amounts (Table 8). Live bicmass gen-
erally increased in importance as a pool with time since fire (Figure 11). Aluminum
was in contrast to the other elements in that its standing crop in soil was much
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Figure 4. Comparison of organic matter in aboveground biomass and in soils of the
scrub stands. Stand ages are Stand 3—2 yr, Stand 2—4 yr, Stand 1—8 yr, and Stand 4—
25 yr. Saw palmetto transects of Stand 2 have a water table closer to the surface than the
other stands.

greater than that in living and dead biomass (Figure 11); these differences were
significant (p < 0.001) in all stands.

DISCUSSION
Biomass

Live biomass (excluding saw palmetto rhizomes) in these stands was com-
parable to that of a variety of fire adapted shrublands {Table 9). Saw palmetto
rhizomes contained considerable biomass in these stands (Table 9). Saw palmetto
rhizomes are a unique element of the scrub community. They are generally
unaffected by fire (Burton and Hughes 1961) forming a persisting element of
aboveground biomass. Hilmon (1968) found length growth rates of saw palmetto
rhizomes of 1.6-2.4 cm per year in south Florida; in south Georgia, the rate was
about 1.2 em per year. Abrahamson (1995) found saw palmetto rhizome growth
rates of 0.6-1.1 cm per year in scrubby flatwoods and 0.8-2.2 cm per year in
flatwoods of the Lake Wales Ridge. Thus, saw palmetto rhizomes one to several
meters long have been growing for decades to centuries. Functionally, these
rhizomes appear to combine elements of an aboveground stem with that of an
underground root system, a situation with some parallels in the lignotubers of
Eucalyptus species in the mallee scrub of Australia and other Mediterranean
type shrublands (Walter 1979, James 1984). Christensen (1985) indicated that
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Figure 5. Comparison of total Kjeldshl nitrogen in aboveground biomass and in
soils of the scrub stands, Stand ages are Stand 3—2 yr, Stand 2—4 yr, Stand 1—8 yr, and
Stand 4—25 yr. Saw palmetto transects of Stand 2 have a water table closer to the surface
than the other stands.

Table 2. Standing crops of total Kjeldahl nitrogen (TKN) (g/m? x 10-?) in above-
ground scrub vegetation and soil

Stand 3 Stand 2 Stand 2 Stand 1 Stand 4
Oak-Saw Saw
Palmetto Palmetto
Stand Age (yr) 2 4 4 8 25
Biomass Category

Total—Live Leaves 953.64  1,369.25 973.86 1,474.05 930.73
Total—Live Stems 1,220.96 1,370.08 32850 1,423.67 4,607.50
Saw Palmetto Rhizomes 2,376.40 3,086.70 6,173.30  4,535.40 312.43
Total Live

(leaves, stems, rhizomes) 4,550.00 5,826.03 7,475.85 7,433.12 5,850.66
Standing Dead—Saw Palmetto 95.94 816.00 879.60 1,151.20 173.25
Standing Dead—OQther 4,937.95 763.20 51.60 502.74 571.67
Litter 1,230.04 771.20 920.00 3,044.86 1,527.82
Total Standing Dead and Litter 6,263.93  2,350.40 1,851.20 4,698.80 2,272.74
Soil 0-15 em 3,620.9 14,1953 40,266.0 8,087.0 5,229.2
Soil 15-30 em 1,882.6 4,890.8 7,807.4 1,468.4 2,070.9
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Figure 6. Comparison of phosphorus in aboveground biomass and in soils of the
scrub stands. Stand ages are Stand 3—2 yr, Stand 2—4 yr, Stand 1—8 yr, and Stand 4—
25 yr. Saw palmetto transects of Stand 2 have a water table closer to the surface than the
other stands.

Table 3. Standing crops of total phosphorus (g/m* x 10-*) in aboveground scrub
vegetation and soil

Stand 3  Stand 2 Stand 2 Stand 1 Stand 4
Oak-Saw Saw
Palmetto Palmetto
Stand Age (yr) 2 4 4 8 25
Biomass Category

Total—Live Leaves 362.88 522.50 377.01 457.21 358.50
Total—Live Stems 372.77 344.10 103.98 374.00 1,013.10
Saw Palmetto Rhizomes 1,357.36 1,763.84 3,527.60 2,591.68 178.56
Total Live

(leaves, stems, rhizomes) 2,093.01 2,630.44 4,008.59 3,422.8% 1,550.16
Standing Dead—Saw Palmetto 13.33 88.00 73.30 86.34 9.90
Standing Dead—Other 161.9¢ 47.70 3.23 132.30 129,93
Litter 329.48 72.30 86.25 175.67 272.83
Total Standing Dead and Litter  504.70 188.00 162.78 394.31 412.66
Soil 0-15 cm 162.0 992.0 3,420.0 571.0 319.0
Soil 15-30 cm 45.0 396.0 929.0 203.0 68.0
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Figure 7. Comparison of calcium in aboveground biomass and in soils of the scrub
stands. Stand ages are Stand 3—2 yr, Stand 2—4 yr, Stand 1—8 yr, and Stand 425 yr.
Saw palmetto transects of Stand 2 have a water table closer to the surface than the other
stands.

Table 4. Standing crops of caleium (g/m? x 107?) in aboveground scrub vegetation
and soil

Stand3 Stand 2 Stand2 Stand 1 Stand 4
Oak-Saw Saw
Palmetto Palmetto
Stand Age (yr) 2 4 4 8 25
Biomass Category

Total—Live Leaves 198.71 242.56 106.76 298.04 182,97
Total—Live Stems 409.74 308.49 47.28 48546  1,588.87
Saw Palmetto Rhizomes 3290.16 42173 855.44 628.48 43.30
Total Live

(leaves, stems, rhizomes) 937.62 97878 1,009.48 1,411.99 1,815.15
Standing Dead--Saw Palmetto 442 49.64 53.51 69.07 5.15
Standing Dead—OQther 512.41 220.69 14.92 85.47 326.89
Litter 382.63 134.96 161.00 468.44 832.66
Total Standing Dead and Litter  899.47 405,29 220.43 622.88 1,164.70
Soil 0-15 cm 985.1 3,149.6 3,097.8 2,004.3 091.4
Soil 15-30 cm 582.8 1,022.2 1,397.3 486.7 503.3
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Figure 8. Comparison of magnesium in aboveground biomass and in soils of the
scrub stands. Stand ages are Stand 3—2 yr, Stand 24 yr, Stand 1—8 yr, and Stand 4—
25 yr, Saw palmetto transects of Stand 2 have a water table closer to the surface than the

other stands.

Table 5. Standing erops of magnesium (g/m? x 10-?) in ahoveground scrub vegetation

and soil
Stand3 Stand 2 Stand 2 Stand 1 Stand 4
Oak-Saw Saw
Palmetto Palmetto
Stand Age (yr) 2 4 4 8 25
Biomass Category
Total—Live Leaves 663.18 1,096.37 886.67 1,567.71 637.39
Total—Live Stems 771.88 658,10 183.81 961.98  2,135.20
Saw Palmetto Rhizomes 2,137.84 277805 5,555.97 4,081.90 281.23
Total Live
(leaves, stems, rhizomes) 3,572.90 453252 6,62648 6,611.59 2,053.82
Standing Dead—Saw Palmetto §0.23 377.40 406.82 754.04 46.04
Standing Dead—Other 825.69 248,04 16.77 138.92 571.87
Litter 654.56 433,80 51750 1,241.37 1,080.3%
Total Standing Dead and Litter 1,540.48 1,059.24 941.09 2,134.32 1,698.08
Soil 0-15 ¢cm 2,198.0 9,895.0 33,1310 5,769.0 2,335.0
Soil 15-30 cm 869.0 3,825.0 8,825.0 988.0 791.0
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Figure9. Comparison of potassium in aboveground biomass and in soils of the scrub
stands. Stand ages are Stand 3—2 yr, Stand 2—4 yr, Stand 1—8 yr, and Stand 4—25 yr.
Saw palmetto transects of Stand 2 have a water table closer to the surface than the other
stands.

Table 6. Standing crops of potassium (g/m? x 107?) in aboveground scrub vegetation
and soil

Stand 3 Stand 2 Stand 2 Stand 1  Stand 4

Oak-Saw Saw
Palmetto Palmetto

Stand Age (yr) 2 4 4 8 25
Biomass Category

Total—Live Leaves 1,530.43  2,269.70 1,909.73  2,097.37 1,417.91
Total—Live Stems 1,488.72  1,428.30 630.43 1,739.15 2,958.65
Saw Palmetto Rhizomes 16,559.79 21,518.40 43,036.72 31,61850 217843
Total Live

(leaves, stems, rhizomes) 19,578.91 2521640 45,676.88 35,455.01 6,552.99
Standing Dead—Saw Palmetto 90.08 363.80 392,16 1,485.05 64.85

Standing Dead—Other 3,416.09 181.26 12.26 58.21 410.56
Litter 716.06 168.70 201.25 784.64 1,004.00
Total Standing Dead and Litter 4,222.23 713.76 605.66 2,327.90 1,479.40
Soil 0-15 cm 3,339.0 7,088.0  15,098.0 5,728.0 5,360.0
Soil 15-30 cm 2,279.0 3,848.0 5,558.0 2,261.0 1,845.0
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Figure 10. Comparison of sodium in aboveground biomass and in soils of the scrub
stands. Stand ages are Stand 3—2 yr, Stand 2—4 yr, Stand 1-8 yr, and Stand 4—26 yr,
Saw palmetto transects of Stand 2 have a water table closer to the surface than the other

stands,

Table 7. Standing crops of sodium (g/m? x 107*) in aboveground scrub vegetation

and soil
Stand 3 Stand 2 Swand 2 Stand 1 Stand 4
Oak-Saw Saw
Palmetto Palmetto
Stand Age (yr) 2 4 4 8 25
Biomass Category
Total—Live Leaves 211.01 572.90 554,24 474.56 195.90
Total—Live Stems 298.74 66200 629.39 537.83 841.80
Saw Palmetto Rhizomes 8,958.58 11,641.34 23,282.16 17,105.09 1,178.50
Total Live
(leaves, stems, rhizomes) 9,468.32 12,876.24 24,465.79 18,117.49 2,216.20
Standing Dead—Saw Palmetto 26.12 159.80 172.26 310.82 23.27
Standing Dead—Other 388.56 124.02 8.39 36.72 233.87
Litter 188.90 154.24 184.00 304.49 305.56
Total Standing Dead and Litter  603.58 438.06 364.64 651.03 562.69
Soil 0-15 cm 2,983.0 4,752.0 11,705.0 3,629.0 3,683.0
Soil 15-30 ¢cm 2,815.0 3,692.0 6,935.0 2,925.0 2,808.0
JUNE 1996 183



5.0

Leaves & Sterns
4.5 l‘ Palmetto Rhizomes
40| Dead & Litter
’ Soil 0—-30 cm
35 F
‘q‘\
3.0
£
8 2.5 =
~ 20}
<
1.5 F
1.0
0.5F
O'O L rrri m LrACY

Stand 3 Stand 2 Stand 2 Stond 1 Stond 4
Ook~Saw Poimatto Sow Palmatic .
Figure 11. Comparison of aluminum in aboveground biomass and in soils of the
scrub stands. Stand ages are Stand 3—2 yr, Stand 2—4 yr, Stand 1—8 yr, and Stand 4—
25 yr. Saw palmetto transects of Stand 2 have a water table closer to the surface than the
other stands.

Table 8. Standing crops of aluminum {g/m* X 10-*) in aboveground scrub vegetation
and soil

Stand3 Stand 2 Stend 2 Swand 1 Stand 4
Oak-Saw Saw
Palmetto Palmetto
Stand Age (yr) 2 4 4 8 25
Biomass Category

Total—Live Leaves 66.32 53.75 13.83 162.08 50.65
Total—Live Stems 38.44 25.94 21.36 228.40 247.63
Saw Palmetto Rhizomes 441.14 573.25  1,146.47 842.30 58.03
Total Live

(leaves, stems, rhizomes) 545.90 652.94 1,181.65 1,232.78 356.32
Standing Dead—Saw Palmetto 1.60 17.00 18.33 115.12 594
Standing Dead—Other 48.57 9.54 0.65 15.88 51.97
Litter 175.72 322.94 385.25 597.26 163.70
Total Standing Dead and Litter 225.89 349.48 404,22 728.26 221.61
Soil 0-15 cm 12,780.0 8,780.0 28,4400 12,290.0  16,690.0
Soil 15-30 cm 19,640.0 16,490.0 13,730.0 6,230.0  17,600.0
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rarison of biomass categories among selected shrublands

Standing
ymass Type €Crop (g/m*) Reference

1
1 saw palmetto rhizomes}) 970-2,300 This Study

roods
1,050 Hough (1582)
500-4,000 Wilbur and Christensen (1983)
ib 1,440 Gray (1982)
wrral 7,600 Gray (1982)
reus
500 Boerner (1981)
ts
1,000-2,000 Boerner (1981)
mes
220-3,210 This Study
dg 560 Hough (1982)
440-1,200 This Study
is 1,860 Hough (1982)
stburn 530 Boerner (1983)
1ed 1,080 Boerner (1983)
620~2,030 Gray (1982)
570-860  This Study
sthurn 570-750  Boerner (1981)
wd 30 Boerner (1981)

250-1,140 Gray (1982)

stubers are common in shrublands where periodic, intense
count for a considerable portion of shrub biomass.
‘on in oak-saw palmetto scrub was comparable to other
ut less than that reported for slash pine (Pinus elliottii)/
{{lex glabra) vegetation {(Hough 1982), perhaps because
wmopy trees. Litter production and decomposition in oak-
eared to reach equilibrium in about eight years. McNab
at the forest floor loading of slash pine/palmetto stands
1 years post-fire and then decreased to equilibrium at 20
1e litter may account for the longer time to equilibrium

1ass formed a conspicuous element in these scrub com-
e two year old stand, it was 89% of live biomass {ex-
zormes) and at 25 years age it was 25% of live biomass.
- amounts of standing dead material after wildfire but
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much less in unburned sites (Table 9, Boerner 1981). Some other shrublands
{e.g., chaparral) accumulete considerable standing dead material. Christensen
(1985) stated that the dead-to-live ratio increases with the time since fire in most
shrub communities. In cak-saw palmetto scrub, the ratio of litter plus standing
dead to total live (including saw palmetto rhizomes) was 48.8% in a two year
old stand and 66.0% in a 25 year old stand. However, this is due in part to there
being fewer saw palmetto rhizomes in the oldest stand sampled. Excluding saw
palmetto rhizomes, the ratio decreased from 134% at two years to 72% at 25
years.

Belowground biomass was not measured in this study. Quercus inopina
clones in scrub at Archbold Biological Station had about 70% of their biomass
below ground (Johnson et al. 1986). Guerin (1988, 1993) found that Quercus
geminata and Quercus myrtifolia ciones (3-4 years since fire) in Ocala National
Forest had about two-thirds of their biomass below ground. These root to shoot
ratios are much higher that most forests (Santantonio et al. 1977). Belowground
biomass data are available for few shrub communities. High ratios of below- to
above-ground biomass have been reported in Quercus gambelii shrublands in
the southwestern U.S, (Clary and Tiedemann 1986), in frequently coppiced Quer-
cus ilex stands on xeric sites in southern France (Canadell and Roda 1991), and
in Australian heathlands (Specht et al. 1958, Low and Lamont 1990). In California
chaparral, Kummerow et al. {1977) found less biomass belowground than above.

Biamass and Soil Chemistry

Total Kjeldahl nitrogen concentrations used here (Schmalzer and Hinkle
1987) for leaves, stems, and rhizomes of saw palmetto, gallberry leaves and stems,
standing dead material, and litter were greater than those reported by Hough
(1982) for these components in the understory of slash/longleaf pine stands. TKN
concentrations in scrub oaks (1.6-3.5%) were higher than those reported (0.5-
1.0%) for oaks at Archbold Biological Station (Ann Johnson, Florida Natural
Areas Inventory, pers. comm.). Scrub oaks in the southwestern U.S. had similar
concentrations in leaves, e.g., Q. gambellii, 1.6% (Tiedemann and Clary 1985),
Q. turbinella, 1.5%, (Klemmedson and Wienhold 1992), but lower concentrations
in stems (0.5-0.8%). Quercus ilex leaves had concentrations of about 1.1-1.4%
{Canadell and Vila 1992). Concentrations were in the general range reported for
chaparral and coastal sage scrub species (Gray 1983) and various European er-
icads (Marrs 1978) but slightly higher than most shrub species in a northeastern
oak-pine forest (Woodwell et al. 1975).

Other nutrient concentrations (P, Ca, Mg, K, Na) here were similar to levels
reported previously for these species (Vickers et al. 1975, Hough 1982, A. Johnson
pers. comm.). Similar concentrations have been reported for evergreen oaks (Can-
adell and Vila 1992, Klemmedson and Wienhold 1992), chaparral and coastal
sage scrub species (Gray 1983), European ericads (Marrs 1978), oak-pine forest
shrub species (Woodwell et al. 1975), and various Mediterranean shrubs (Specht
and Moll 1983).

Standing crops of nutrients in live biomass in scrub were similar to those
reported in other shrublands (Table 10), although N pools were relatively high
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and K pools low. Nitrogen pools in live plus standing dead biomass of scrub
exceeded those reported for slash pine flatwoods understory vegetation, but other
nutrient pools were similar {Table 10). Saw palmetto rhizomes were important
nutrient pools in scrub and larger than those reported for slash pine flatwoods
(Table 10, Hough 1982). This was due primarily to greater saw palmetto biomass,
except for N where concentrations in scrub were also greater. Litter biomass
nutrient pools in scrub were comparable to similar shrublands (Table 10). Most
nutrient pools in standing dead biomass in scrub were comparable to other
shrublands, although N pools were higher (Table 10).

Aluminum concentrations were generally similar to those found by Vickers
et al. (1975). Few studies report Al concentrations in vegetation. Hough (1982)
reported larger pools of Al in litter (1.42 g/m?) but similar amounts in live
understory biomass (0.07 g/m?) and saw palmetto rhizomes (0.05 g/m?) in slash
pine flatwoods compared to cak-saw palmetto scrub.

There were no apparent effects of fire on nutrient concentrations in live
biomass in the two year old stand. However, litter showed elevated K, Ca, and
P in the youngest stand, possibly as the result of ash deposition from fire. Sodium
was not increased; it is a more mobile ion and any deposited in ash may have
leached by two years post-fire.

Soil chemical properties in scrub are strongly influenced by depth to the
water table (Schmalzer and Hinkle 1992). Wetter soils have more otganic matter,
higher cation exchange capacity, and more nutrients. Effects of fire on scrub soils
appear minor. Soil pH and Ca showed modest increases after a prescribed burn
of some of these stands and there was a delayed increase in NO,-N (Schmalzer
and Hinkle 1991). Abrahamson (1984a) found a short-lived increase in Ca but
little change in other soil parameters after fire.

Nutrient standing crops of N, P, Ca, Mg, and K in biomass equaled or
exceeded those in the soil except in Stand 2. Only Al had consistently greater
pools in soil than biomass. If scrub oaks have even half of their biomass below
ground, then it is likely that the biomass pools of most biologically important
elements exceed those in the mineral soil, except on wetter sites. Total soil cation
nutrient levels probably exceeded available nutrient values used to calculate pool
sizes here; however, these may be made available only slowly by weathering. In
contrast, available soil N concentrations (NH,-N + NO,-N) were much less than
total N (Schmalzer and Hinkle 1992).

Nutrient Cycling Considerations

Several properties of oak-saw palmetto scrub place it among those systems
that could be vulnerable to nutrient losses from fire. Oak-saw palmetto scrub
oceurs on low nutrient soils, and much of the nutrient capital is sequestered in
bicmass rather than the mineral soil; therefore, it is an oligotrophic system
{Boerner 1982). However, scrub species have evolved under regimes of low nu-
trient soils and repeated fires (Abrahamson 1984a, 1984b). These species have
characteristics considered adaptations to low nutrient soils including evergreen,
sclerophylous leaves (Loveless 1961, 1962; Monk 1966}. Other characteristics,
particularly the dominance of sprouting species, are considered adaptations to
repeated fires (Keeley and Zedler 1978, Malanson 1985).
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Our data were not sufficient to determine vulnerability of scrub to nutrient
loss, because it would he necessary to quantify belowground biomass and nutrient
pools, volatilization and leaching losses with fire, and post-fire nutrient uptake,
We can compare nutrient deposition from precipitation to see if it iz important
relative to biomass pools.

Nitrogen is the element most often lost in significant quantities with fire
(Raison 1979). Inorganic nitrogen (NH,-N + NO,-N) deposition in precipitation
(0.262 g/m?/yr) was minor compared to the biomass pools. Biological nitrogen
fixation in scrub has not been studied. Galactia elliottii and G. volubilis are the
only common legumes in thege scrub stands. Nitrogen fixation iz associated with
wazx myrtle (Myrica cerifa) (Permar and Fisher 1983); however, the low percent
cover of wax myrtle (1-2%) suggests that nitrogen additions by it are minor.
Non-symbiotic nitrogen fization probably occurs in scrub as it does in slash pine
plantations (DiStefano and Gholz 1989). Stimulation of nitrogen fixation after
fire has been reported for loblolly pine (Pinus taeda) forests {(Jorgensen and
Wells 1971), but whether this occurs in scrub is unknown. Available nitrogen
(NH,-N + NO,-N) was a small fraction of TKN in scrub soils (Schmalzer and
Hinkle 1992), but it did increase 18 months after a fire (Schmalzer and Hinkle
1991).

Calcium deposition by precipitation (0.145 g/m?/yr) was small compared to
total biomass pools. Calcium inputs were more significant compared to the amount
of calcium in leaves and stems; calcium in saw palmetto rhizomes is not affected
by fire. Calcium losses from fire were typically less that that of N, P, or K (Raison
et al. 1985), and it is not as mobile in the soil as other cations; thus, precipitation
may supply enough to replace the losses from fire. Magnesium in precipitation
{(0.137 g/m?/yr) was small compared to total biomass pools. Magnesium in leaf
and stem biomass (1.4-2.8 g/m?) could accumulate from 10 to 20 years of pre-
cipitation. Potassium deposition by precipitation (0.064 g/m?/yr) was small com-
pared to biomass pools. Potassium losses could occur since it is generally more
mobile in the soil than Ca or Mg. In contrast, precipitation deposition of Na
{1.082 g/m2/yr) was relatively large compared to biomass pools and losses of it
could be replaced more readily,

Additions of major nufrients by precipitation were small relative to biomass
pools, suggesting that efficient nutrient accumulation, retention, and recycling
are important to maintaining the stability of the system (Raison 1979). Nitrogen
fixation appears to be required to replace N lost in scrub fires. Nutrient uptake
by plants or immobilization in the s0il may be important in limiting the losses
of cations and P as has been found in low nutrient ecosystems such as the New
Jersey Pine Barrens {Boerner 1983) and tropical pine savannas (Kellman et al.
1987). Saw palmetto rhizomes are an important nutrient pool that persists through
fires. Although nutrients tended to accumulate in stem biomass with time, total
biomass pools for N, P, Mg, and Na were not different among stands when saw
palmetto rhizomes were included. The persistence of standing dead material may
be another nutrient retention mechanism (Boerner 1983),

SUMMARY

1. Live biomass increased with time since fire. Litter biomass increased for
about eight years post-fire. Standing dead biomass and saw palmetto rhizomes
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were important biomass components. Biomass in oak-saw palmetto scrub was
similar to that in chaparral and other shrublands.

2. Nutrients concentrations in live biomass did not change with time since
fire. Nutrient concentrations in biomass and nutrient standing crops were similar
to those in other shrublands.

3. Soil chemical properties were strongly influenced by soil drainage; the
wetter soils had more organic matter and larger standing crops of nutrients.

4. Biomass pools of major nutrients (N, P, K, Ca, Mg, Na) frequently
equaled or exceeded those in the soil. Concentration of nutrients in biomass could
increase vulnerability to nutrient losses. However, the importance of standing
dead biomass, saw palmetto rhizomes, and probably belowground biomass as
nufrient pools may buffer the system against nutrient losses.

5. Deposition rates of N, P, Ca, Mg, and K in precipitation were low com-
pared to biomass pools, while deposition of Na was greater relative to amounts
in biomass. Nitrogen fixation and mechanisms that retain and recycle nutrients
may be important to the persistence of scrub on low nutrient soils.
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